Enhanced cardioprotective efficacy of Rosmarinus officinalis-loaded polydopamine nanoparticles for targeted therapy of myocardial infarction

Scritto il 05/12/2025
da Ming Zhang

J Biomater Sci Polym Ed. 2025 Dec 5:1-21. doi: 10.1080/09205063.2025.2590717. Online ahead of print.

ABSTRACT

Myocardial infarction (MI) is a predominant cause of mortality and heart failure in cardiovascular disorders. This article presents a novel polydopamine (PD) nanoparticles, tagged with cyclic RGD peptides (RP), for the targeted delivery of Rosmarinus officinalis L. (RO) (RP-PD@RO NPs). RO is a therapeutic accessory for cerebrovascular and cardiovascular diseases. RP-PD@RO NPs were developed and characterized using transmission electron microscope (TEM), zeta potentials, and FT-IR spectral analysis. The cell viability was investigated using cell counting kit-8 (CCK-8) analysis. The migration ability was assessed through in vitro wound assays and migration assays. MI targeted therapy was examined using wild-type C57 BL/6J mice. The expression of specific proteins was confirmed using an enzyme-linked immunosorbent assay (ELISA). PD is an efficient carrier recognized for its superior surface modifiability and cytocompatibility. RO was incorporated into PD via π-π stacking, while RP was conjugated via a Michael addition process, yielding stable RP-PD@RO NPs with a mean diameter of 204.51 ± 3.52 nm. Targeting investigations have shown a 2.19-fold enhancement in the efficiency of NPs accumulation within cellular uptake. The study revealed a 1.46-fold enhancement in cell proliferation, a 1.48-fold rise in the rate of angiogenesis, and a notable decrease in the MI site. These data indicate that RP-PD@RO NPs can reduce the MI site and enhance endothelial cell (EC) function via targeted distribution.

PMID:41347305 | DOI:10.1080/09205063.2025.2590717