Cell Mol Life Sci. 2025 Dec 26. doi: 10.1007/s00018-025-06026-8. Online ahead of print.
ABSTRACT
BACKGROUND: Atherosclerosis is a chronic vascular inflammatory disease caused by multiple factors. Anti-inflammatory treatment is an effective approach to treat atherosclerosis. Talin1 is a cell membrane-associated cytoskeletal protein that is widely expressed in mammals and plays essential roles in angiogenesis and endothelial cell barrier function. However, the role of Talin1 in atherosclerosis and the related mechanisms remains unclear.
METHODS: ApoE-KO mice were subjected to partial carotid artery ligation to establish an atherosclerosis model, and the expression of Talin1 in atherosclerotic plaques was verified in vivo. Human umbilical vein endothelial cells (HUVECs) and aortic endothelial cells (HAECs) were treated with tumour necrosis factor α (TNF-α) (10 ng/mL) and subjected to low oscillatory shear stress (OSS) (approximately ± 4 dyn/cm2) to establish cellular inflammation models. A lentivirus was used to regulate Talin1 expression in HUVECs and HAECs.
RESULTS: Talin1 levels were increased in the serum of subjects with coronary heart disease (CHD) compared with those without CHD. We also found that Talin1 levels were increased in the serum of ApoE-KO mice in the operation group compared with the sham operation group. In addition, Talin1 expression was increased in endothelial cells in atherosclerotic plaques. In addition, neither TNF-α nor OSS promoted inflammation in endothelial cells with Talin1 knockdown. Moreover, we found that TNF-α and OSS could activate Piezo1 to mediate Ca²⁺ influx and subsequently activate Talin1 to regulate YAP and promote inflammation.
CONCLUSIONS: The results of this study suggest that Talin1 plays a vital role in endothelial inflammation and may be a novel anti-inflammatory therapeutic target for atherosclerosis.
PMID:41452468 | DOI:10.1007/s00018-025-06026-8