J Biochem Mol Toxicol. 2026 Feb;40(2):e70714. doi: 10.1002/jbt.70714.
ABSTRACT
Atherosclerosis is a major cause of cardiovascular diseases, and endothelial cells (ECs) senescence plays a key role in its initiation and progression. This study investigates the function and epigenetic regulatory mechanisms of long non-coding RNA (lncRNA) OIP5 antisense RNA 1 (OIP5-AS1) in oxidized low-density lipoprotein (Ox-LDL)-induced senescence and atherosclerosis in human aortic endothelial cells (HAECs). The experiments show that Ox-LDL stimulation upregulates the expression of OIP5-AS1 and RASA1 while inhibiting miR-30b-5p. Silencing OIP5-AS1 significantly suppresses the expression of senescence-associated secretory phenotype (SASP) factors, alleviates HAECs senescence, and enhances proliferation, migration, and angiogenesis. Methylation-specific primers (MSP) and bisulfite-specific primers (BSP) analyses reveal that Ox-LDL stimulation activates OIP5-AS1 expression by reducing the DNA methylation level in its promoter region and altering histone modifications (increased H3K27ac and decreased H3K9me3). Luciferase assays show that OIP5-AS1 acts as a competing endogenous RNA (ceRNA) by binding to miR-30b-5p and upregulating RASA1. Animal experiments further confirm that the knockdown of OIP5-AS1 alleviates atherosclerosis in ApoE-/- mice. This study reveals the impact of the OIP5-AS1/miR-30b-5p/RASA1 axis and its epigenetic regulation on atherosclerosis.
PMID:41586568 | DOI:10.1002/jbt.70714