Int J Nanomedicine. 2025 Dec 25;20:15705-15721. doi: 10.2147/IJN.S558039. eCollection 2025.
ABSTRACT
BACKGROUND: In the microenvironment of atherosclerosis (AS), low-density lipoprotein (LDL) accumulates in injured endothelial areas and undergoes oxidation, thereby generating oxidized LDL (ox-LDL). The formation of ox-LDL, in turn, not only amplifies endothelial cell (EC) dysfunction but also triggers macrophage polarization into the pro-inflammatory M1 phenotype. This cascade results in increased inflammatory cytokine secretion and exacerbated lipid accumulation. Therefore, a dual-targeting strategy aimed at both ECs and macrophages to inhibit the vicious circle between inflammation and lipids is a promising avenue for AS treatment.
METHODS: Simvastatin (SIM)-loaded nanomicelles (PLA-PEG/SIM) were prepared using the thin-film hydration method. Then, platelet membrane (PM) was coated the nanomicelles via sonication to obtain PM@PLA-PEG/SIM dual-targeting biomimetic nanoparticles. The morphological features of the nanoparticles were assessed by transmission electron microscopy (TEM). Cytotoxicity was evaluated using the CCK-8 assay and live/dead cell staining. Their targeting ability toward ECs and macrophages was assessed by flow cytometry and confocal laser scanning microscopy (CLSM). The biosafety, targeting ability, and therapeutic efficacy of PM@PLA-PEG/SIM against AS were further validated in ApoE-/- mouse models.
RESULTS: PM@PLA-PEG/SIM effectively reduced the drug toxicity of SIM, exhibiting good biocompatibility. In vitro, cell experiment results showed that the nanoparticles inhibited foam cell formation, decreased interleukin-6 (IL-6) expression, and increased interleukin-4 (IL-4) and interleukin-10 (IL-10) expression by promoting macrophage repolarization. In vivo, results indicated that the formulation demonstrated excellent plaque-targeting ability. More importantly, the plaque area and lipid levels in the PM@PLA-PEG/SIM group were lowest, and plaques were most stable, showing its best therapeutic efficiency.
CONCLUSION: PM@PLA-PEG/SIM alleviated progression of AS by co-targeting ECs and macrophages to inhibit the vicious cycle between inflammation and lipids. Our study provides a new strategy for the treatment of the disease by the co-targeting biomimetic nanoparticle.
PMID:41477526 | PMC:PMC12750338 | DOI:10.2147/IJN.S558039