J Clin Invest. 2026 Jan 27:e196271. doi: 10.1172/JCI196271. Online ahead of print.
ABSTRACT
How β-Catenin (βCat) mediates tissue hyperplasia is poorly understood. To explore this, we employed the adrenal cortex as a model system given its stereotypical spatial organization and the important role βCat plays in homeostasis and disease. For example, excessive production of aldosterone by the adrenal cortex (primary aldosteronism, PA) constitutes a major cause of cardiovascular morbidity and is associated with βCat gain-of-function (βCat-GOF). Adherens junctions (AJs) connect the actin cytoskeletons of adjacent zona Glomerulosa (zG) cells via a cadherin-βCat-α-Catenin complex and mediate aldosterone production. Whether βCat-GOF drives zG hyperplasia, a key feature of PA, via AJs is unknown. Here, we showed that aldosterone secretagogues (K+, AngII) and βCat-GOF mediated AJ formation via Rho/ROCK/actomyosin signaling. In addition, Rho/ROCK inhibition led to altered zG rosette morphology and decreased aldosterone production. Mice with zG-specific βCat-GOF demonstrated increased AJ formation and zG hyperplasia, which was blunted by Rho/ROCK inhibition and deletion of α-Catenin. βCat also impacted AJ formation independently of its role as a transcription factor. Furthermore, analysis of human aldosterone-producing adenomas revealed high levels of βCat expression were associated with increased membranous expression of K-Cadherin. Together, our findings identified Rho/ROCK signaling and αCat as key mediators of AJ formation and βCat-driven hyperplasia.
PMID:41591811 | DOI:10.1172/JCI196271

