FASEB J. 2026 Jan 31;40(2):e71473. doi: 10.1096/fj.202502868R.
ABSTRACT
Chronic stress is associated with inflammatory activation and oxidative stress responses leading to endothelial dysfunction, which promotes the development of atherosclerosis (AS). SGLT2 inhibitors, such as Dapagliflozin (DAPA), exhibit a protective effect against cardiovascular diseases. However, the effects and mechanisms of DAPA on chronic stress-induced AS are largely unknown. The aim of this study was to determine whether DAPA confers a protective effect against chronic stress-induced AS and to elucidate its further molecular mechanisms. The combined high-fat diet-fed and chronic unpredictable mild stress in ApoE-/- mice and lipopolysaccharides- and corticosterone-induced human umbilical vein endothelial cells (HUVECs) were employed to evaluate the antiatherosclerotic effect of DAPA under chronic stress in vivo and in vitro. Histological staining, western blot analysis, siRNA transfection, reactive oxygen species (ROS) staining, and apoptosis assessment were used to investigate the potential mechanisms of DAPA against AS under chronic stress. The results indicate that DAPA significantly improved plaque size and increased plaque stability in the aorta under chronic stress and reduced inflammation and oxidative stress and inhibited apoptosis in the aorta and HUVECs. Chronic stress upregulated regulated in development and DNA damage response 1 (REDD1) expression, which exacerbated cellular inflammation, oxidative stress, and apoptosis levels, leading to endothelial dysfunction. In contrast, DAPA downregulated REDD1 expression and activated the AKT/FoxO1 pathway. In addition, p53 was a transcriptional regulator of REDD1 under chronic stress. More importantly, p53 agonists prevented DAPA from downregulating REDD1 and inhibited AKT/FoxO1 activation, thereby exacerbating chronic stress-induced endothelial dysfunction. These results suggest that DAPA effectively attenuates chronic stress-induced endothelial dysfunction and AS by downregulating REDD1 to activate the AKT/FoxO1 pathway.
PMID:41587381 | DOI:10.1096/fj.202502868R

