Hum Genomics. 2026 Jan 3. doi: 10.1186/s40246-025-00907-6. Online ahead of print.
ABSTRACT
BACKGROUND: Patients with congenital heart disease are identified in 1% of live births. Improved surgical intervention means many patients now survive to adulthood, the corollary of which is increased mortality in the over-65-year-old congenital heart disease (CHD) population. In the clinic, genetic sequencing increasingly identifies novel genetic variants in genes related to CHD. Traditional assays for interpreting novel genetic variants are often limited by gene-specificity, whereas animal models are cumbersome and may not accurately reflect human disease. This study investigates CRISPR gene editing in induced pluripotent stem cells and cardiomyocyte-directed differentiation as a human disease model to investigate novel genetic variants identified in association with CHD.
METHODS AND RESULTS: We identified a GATA4 p.Arg284His genetic variant in a paediatric patient. This genetic variant was introduced into induced pluripotent stem cells (iPSCs) using CRISPR gene editing with homology-directed-repair. GATA4 genetic variant and isogenic control iPSCs were selected and differentiated into cardiomyocytes. Expression of the GATA4 p.Arg284His variant resulted in altered calcium transients, indicative of CHD and consistent with the patient's clinical phenotype. Transcriptomics revealed cellular pathway changes in cardiac development, calcium handling, and energy metabolism that contribute to disease aetiology, mechanism and identification of potential treatments.
CONCLUSION: Directed differentiation of iPSCs harbouring the GATA4 p.Arg284His genetic variant recapitulated the CHD phenotype, indicated disease mechanisms, and pointed to potential sites for targeting with therapy. The study highlights the utility of transcriptomics for the functional interpretation of cardiac genetic variants and is an exemplar for precision medicine approaches for the investigation of CHD.
PMID:41484984 | DOI:10.1186/s40246-025-00907-6

