Signal Transduct Target Ther. 2025 Dec 15;10(1):402. doi: 10.1038/s41392-025-02502-6.
ABSTRACT
Cellular senescence is deeply involved in physiological homeostasis, development, tissue repair, aging, and diseases. Senescent cells (SnCs) accumulate in aged tissues and exert deleterious effects by secreting proinflammatory molecules that contribute to chronic inflammation and aging-related diseases. We revealed that an aberrant interaction between glycolytic PGAM1 and Chk1 kinase is augmented in SnCs associated with increased glycolysis, whose byproduct, lactate, promotes this binding in a noncell autonomous manner. The pseudo-Warburg effect of SnCs with enhanced PPP (pentose phosphate pathway) activity is maintained by HIF-2α phosphorylation by Chk1 and subsequent upregulation of glycolytic enzymes, creating a vicious cycle reprogramming the glycolytic pathway in SnCs. HIF-2α also activates FoxM1 expression, which transcriptionally suppresses proapoptotic profiles, including BIM, and upregulates DNA repair machineries in SnCs. FoxM1 thus supports the genomic integrity and survival capacity of SnCs during their glycolytic changes. Chemical abrogation of PGAM1-Chk1 binding reverts these phenotypes and eliminates SnCs through senolysis. Inhibition of the PGAM1-Chk1 interaction improves physiological parameters during aging and inhibits lung fibrosis in mouse models. Our study highlights a novel pathway contributing to the metabolic reprogramming of SnCs and how the use of a new senolytic molecule that targets the PGAM-Chk1 interaction creates a specific vulnerability of those cells to potentially fight age-related diseases.
PMID:41392167 | DOI:10.1038/s41392-025-02502-6

