J Nanobiotechnology. 2026 Feb 6. doi: 10.1186/s12951-026-04091-0. Online ahead of print.
ABSTRACT
BACKGROUND: Chronic obstructive pulmonary disease (COPD) frequently coexists with extrapulmonary comorbidities, most notably cardiovascular diseases (CVD). However, the mechanisms linking COPD to CVD, particularly atherosclerotic CVD, remain poorly understood. Extracellular vesicles (EVs), as key mediators of inter-organ communication, may participate in this pathological connection. This study aims to determine whether EVs derived from airway epithelial cells (AECs) of individuals with COPD contribute to endothelial dysfunction and atherosclerosis.
METHODS: EVs were isolated from primary airway epithelial cells of COPD patients and matched controls. Their effects on endothelial cell function were assessed in vitro by evaluating inflammation, apoptosis, and monocyte adhesion. ApoE-/- mice were intravenously injected with these EVs to examine their impact on atherosclerotic lesion development. Differentially expressed microRNAs were identified, and the regulatory relationship between miR-141-3p and PDCD4 was validated through molecular assays. Additionally, miR-141-3p supplementation was performed to determine its therapeutic potential in mitigating endothelial injury and atherosclerosis.
RESULTS: COPD AECs-derived EVs markedly increased endothelial inflammation, apoptosis, and monocyte adhesion compared with control EVs. In ApoE-/- mice, COPD-derived EVs accelerated the formation of atherosclerotic plaques. Mechanistic analyses revealed that miR-141-3p was significantly downregulated in COPD EVs and directly targeted the 3' untranslated region of PDCD4 to regulate its transcription, leading to dysregulation of PDCD4/NF-κB signaling in endothelial cells. Restoration of miR-141-3p levels in COPD-derived EVs alleviated endothelial injury and reduced atherosclerotic lesion progression both in vitro and in vivo.
CONCLUSIONS: This study identifies a previously unrecognized mechanism by which COPD AECs-derived EVs may promote atherosclerotic CVD via miR-141-3p-mediated regulation of PDCD4 and subsequent activation of NF-κB signaling. These findings highlight miR-141-3p as a promising therapeutic target to reduce vascular complications in COPD.
PMID:41652466 | DOI:10.1186/s12951-026-04091-0

